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ABSTRACT
Two applications of automatic target recognition (ATR) using artificial neural networks are
presented.   These are, target position detection and target classification.   The neural
networks are based on the probabilistic RAM (pRAM) neuron which is briefly described.
The pRAM has been built using VLSI techniques and includes learning on-chip which allows
the pRAM to be used as an adaptive embedded controller in robust systems.

1. Target Position Detection

Given an image or scene, S, and a target image, P, the neural system is to find the coordinates
of the target image, P, in the scene, S.   Additionally, given any sub-scene S’ containing the
target, P, the system is expected to find the image P and to return its coordinates with respect
to S’.   It is assumed that a reference scene S0 and a target image, P0, are known a priori.    It is
also assumed that the range, azimuth and elevation of the observation point of scene, S, from
the target, P, are known to a reasonable accuracy.   This information will be used to transform
any sub-scene S’ to the same scale as S0, so as to produce a scene S for analysis of where the
target P is located in S.

The target image is typically derived from a photograph and the image to be matched may
come from a video camera or another photograph.
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Figure 1.  (a) the target image, (b) change of viewpoint, (c) change of scale

In the simple images in Fig. 1, if (a) is the target image, P0, then (b) and (c) are the same
target seen from a different angle or range.   It can be seen that (b) and (c) can be made to
approximate (a) by the application of suitable geometric transforms.   It is not possible to
obtain a perfect reconstruction of (a) from (b) owing to the three-dimensional nature of the
image since these images are available to the system in two-dimensional form.



However, in real images, the target will not be readily segmented from its background.
Therefore the scene in which the target is placed is significant.  It is essential that additional
information concerning the viewpoint of the reference scene and the observed scene is
known, otherwise the transformation of the observed scene to match the reference scene
cannot be performed accurately.   The accuracy of this transformation is limited, in any case,
and the maximum difference in the angle of view between the reference and observed images
is around 30°.  Standard correlation techniques do not give good performance for these
complex images in arbitrary scenes, which is why a neural network is used to handle the
non-linear characteristics of this problem.

There are additional problems inherent in using these techniques for outdoor scenes, which
are the time of day and the time of year.   Only one reference scene may exist and this will be
for a certain time of day.   If the scene is later observed at a different time of day, then the
effects of shadows or the lack of shadows will be significant.   Shadows can distort the
apparent outline of objects, examples of which might be buildings or vehicles.  Other
problems will be caused by night/day or summer/winter differences in the images.   
Substantial changes, such as a change from full foliage to absence of foliage or a thick
covering of snow cannot reasonably be accommodated.

In the example described later, the reference scene was derived from a high-resolution
photograph and the observed images were received from an infra-red sensor.   Here, there is a
cross-spectral problem where parts of the image which are optically dark may appear to be
light in the infra-red image owing to their high temperature.   Therefore, this recognition
system must be insensitive to colour.

Because of the above artefacts in the observed image, preprocessing is essential in order to
remove, or at least reduce, these unwanted features.   Most of the problems are caused by
scene illumination; however, it is assumed that the structure of the target image will not
change.   This suggests that classification based on some form of feature detection will give
the best results, rather than template matching techniques alone.    The exact features to be
extracted are dependent upon the structure of the target.

8.1 An example of position detection

In the example described below, a photograph of a building was used as the target image.   
The observed image was part of a set of infra-red images at different ranges.

As stated above, the relevant features for position detection are dependent upon the structure
of the target.  For a building, these features might be the corners or edges of the building with
architectural features such as windows providing additional information.   The simplest form
of feature extraction is to use edge-detection.   This method works well with high-resolution
and high-contrast images.   When low-resolution and low-contrast infra-red images are used,
an edge may not be completely represented.

Therefore, a combination of conventional image processing and non-linear principal
component analysis was investigated in the solution to this problem.   The extracted features
were passed to a pyramidal neural structure and noise was injected during training to give
greater tolerance to variations in the observed image.

8.2 Preprocessing

In this example, the parameters of the reference scene viewpoint are known a priori.   It is
assumed that navigational information is available to perform second-order geometric
transformations [1] on the observed image to give an approximate match to the reference
scene in terms of target size and angle-of-view.



Two methods of further processing were then used and compared.

8.3 Principal Components Analysis

Principal Components Analysis (PCA) [2] of an image yields an ordered set of masks which
represent the most common features in that image and their order gives their frequency of
occurrence.  Experiments were conducted to see how many components were required to
reconstruct the original image to a given accuracy, which was normally taken to be better than
95%.   In this example, six PCA masks of size 8 by 8 pixels were used.   

The image is multiplied by the six PCA masks which results in six matrices.   These matrices
are input to the neural network.  Since each set of 64 pixels yields one vector, and with six
components used, a useful reduction in the dimension of the input of 64/6 was achieved.

To train the neural network, the PCA masks were extracted from the reference scene.   A
target point on the building was then marked manually.   The image was then scanned in 8 x 8
pixel segments at 2 pixel increments.  At each step, the image segment was convolved with
the PCA masks and the 6-element vector applied to a neural network.   The network was
trained to give an output of "0" for all areas outside the marked segment and to give an output
of "1" at the marked point only.   The network was assessed on a geometrically-corrected
infra-red image containing the same object.   If successful, the network should give a
maximum response when the 8 x 8 pixel area containing the previously marked point in the
photograph is seen in the infra-red image.

The results of using PCA were disappointing.   Although there was a peak in the response at
the desired point, there were a number of other peaks in the response, some of which were
larger in amplitude than the desired response.   This is mainly due to the use of PCA masks
derived from the photograph being used for the infra-red image.   These masks are clearly not
sufficient to discriminate the spatial features in the infra-red image.

8.4 Edge detection

In place of PCA, edge-detection using eight preferred orientations was used.   The absolute
value of the edge-detected images was used and a single image was produced by summing the
eight outputs.   It is clear that the discrimination performance will be improved if each
edge-detected feature is separately processed, but the advantages expected will be small.   It is
noted that this method of edge-detection is a special case of PCA - where the components (or
masks) are predefined.

The reference photograph was processed to produce an edge-detected image.   Again one
point on the building was marked manually.   An 16 x 16 pixel window centred on this point
was used to train the neural network to give an output of "1" and the complement of this area
was applied to the network and trained to give an output of "0".   Training noise [3] was used
to improve generalisation of the network.

Figure 2.  A section of the edge-detected infra-red and photographic images (64x64 pixels)
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When the network of Fig. 3, trained on the edge-detected photographic data, was used to
search for the marked point in the geometrically-corrected infra-red image, the maximum
response was found at the target point.    The infra-red image was searched by scanning
across the entire image (256 x 256 pixels) using the 16 x 16 mask moving in 2 pixel
increments.

Figure 3. The pRAM neural network used in the position detection system.

Since the pRAM neuron produces an output in the form of a spike-train, and receives
real-valued inputs in the same form, each input was presented for a number of iterations
(typically 1000) and the output response was accumulated.   The results are shown as the
firing rate in Fig. 4, where the maximum response is seen at an offset of zero pixels from the
marked position.

Figure 4. The search results for the target position in an infra-red image.

8.5 Discussion of results

The results in Fig. 4 represent a single horizontal scan across the infra-red image, passing
through the target point.  A similar scan for the vertical direction also shows a unique
maximum response.   In the final system, the response is a 2-D map of the response of the net
as it scans the received image, in which a unique (maximum) response is required.   However,
a maximum response does not indicate any certainty of having found the target.   If the peak
of the response is not sharp, the confidence of the result is low.   

A circle of error probability (CEP) estimate is required in order to assess the accuracy of the
result.  The CEP estimate can be made using the variance of the spike trains with the formula
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where  is the mean response at the maximum output of the net and R is the spike train< α >
length.    We take the CEP as defined by the intersection of the horizontal line at 2  belowσ
the maximum with the response curve.   Thus a broad response gives a large CEP and a sharp
response, a small CEP.   We find that, with , that for the data ofR=103, α ∼ 0.8, so σ ∼ 1%
Fig 4, that the CEP  pixels in the horizontal direction.≈ ±6

9. Target Classification

A more conventional use of ATR is in target classification.   Here an imaging system is used
to detect the presence of features in a scene which may constitute a target.  Small ’patches’ are
extracted from an image of size 16x16 pixels each containing a possible target.   A
probabilistic Random Access Memory (pRAM) neural network is used for the classification
of objects in a video sequence of FLIR (Forward Looking Infra Red) images into two classes,
target and clutter [4].  For simplicity, the objects are taken to be vehicles in the following
description.

The image sequences used for training and testing were gathered from real scenes.  These
sequences of frames were first passed through a hot-spot detection system which identified
points in the image that have a high probability of corresponding to a target.  16 x 16 pixel
patches were centred on each hot-spot.  These hot-spots have a high probability of
corresponding to a target as high contrast areas in the thermal image indicate a possible
vehicle engine.  This stage reduces the amount of information that has to be processed
subsequently.  This is also the most critical part of the algorithm since an object missed will
never be selected in any subsequent ATR operation.

The second stage is the feature extractor.  The targets are noisy and only a few pixels in size.
Hence the use of a shape-based feature extraction technique [5, 6] was not possible nor was it
possible to extract any handcrafted features [7]. 

Then feature extraction was done on the image patches surrounding these hotspots using
Principal Component Analysis (PCA).  These features serve as input to a
reinforcement-trained pRAM net which  produces values of (1 0) for targets and (0 1) for
clutter.  

Each patch contains a grey-scale sub-image where the target size may vary from a few pixels
across to the full width of the patch.   A neural network is trained on a large number of
patches taken from reference video sequences where the targets and clutter have been
previously classified visually.   

9.1 Principal Component Analysis

Based on the data above, Petersen [4] showed that for 90% reconstruction accuracy 6 PCA
features are needed, for 95%, 15 features and for 99%, 47 features are required.   An
inspection of the PCA masks shows that there is little structure above the 20th eigenvector.
This analysis confirmed his intuitive impression that sixteen or so features are necessary in
order to maintain classification accuracy.  

9.2 The pRAM classifier

In this application, a pRAM neural network was used for the classification of objects into two
classes.  pRAM neural nets have been successful in discriminating digits with a moderate
amount of noise [3].  They also have good discrimination and generalisation properties [8].

A pyramidal network structure (Fig. 5) is adopted for the classifier as it provides a good
compromise between generalisation and storage capacity.  The input to the network is the

σ2 = <α>(1−<α>)
R



PCA data for one patch and the output is (1 0) for targets and (0 1) for clutter.  The pyramidal
structure consists of two layers of pRAM neurons preceded, during training, by a layer of 16
1-pRAMs (not shown) for noise-injection.   The weights of the noise-injection layer are
changed according to the percentage of noise applied during training.  Various other
architectures were also experimented with during simulations, for example one output layer
pRAM (binary coded output) or 32 pRAMs in the input layer.

Figure 5. The pRAM neural network

9.3 Results

After training, the following results were obtained [4] where S1 and S2 were two sequences
of images taken on separate occasions.   Training was performed using every 10th frame of
the sequences in S1 or S2.  S1’ and S2’ are subsets of sequences S1 and S2 which do not
contain any of the training set.

Training Set Test Set Pr

Performance
Pfa

False Alarm
Pd

Detection

S2 S2 98% 2.7% 100%

S2 S1’ 71% 33.6% 87%

S1 S1’ 93% 8.5% 99%

S1 S2’ 93% 0 84%

Table 1. Classification performance of the pRAM ATR system.

Pr is the total number of objects correctly classified, divided by the total number of objects
presented to the net,
Pd is the number of targets correctly identified as targets divided by the total number of
targets,
Pfa is the number of clutter-objects incorrectly identified as targets divided by the number
of clutter objects.

So the probability of detection is high, in the range 84 - 100% and false alarms are low,
except when tested on S1’.

9.4 False-alarm rate

It is possible to make the false-alarm rate arbitrarily low by setting a high threshold.
However, this is likely to make the detection rate low as well.   In the same way, the detection
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rate can be made very close to 100% in most cases, thus ensuring that all targets are noted.   
But this is likely to cause an unacceptably high false alarm rate.   Therefore Pfa and Pd must
never be viewed in isolation, but as a pair.   Pr shows the true performance of the classifier in
terms of the percentage of correctly-classified objects.

9.5 Training sets

The need to have an adequate training set is exemplified in the results above.   The poor test
result for S1’ was analysed by investigating the nature of the failures.   It was found that there
were features present in set S1’ which were not present in set S2 and this gave rise to false
alarms.   In other words, the neural network had not been told how to classify these new
objects in S1’ and by generalisation, it classified them as targets.

When the network was trained using a set which included the new objects (line 3 above), the
performance of the network improved considerably.   What this means is that the network
was given the information, during training, which enabled it to discriminate between the new
clutter objects and real targets.

When there was an imbalance in the number of available samples between the classes, it was
necessary to adopt a differential training rate to compensate [9].

9.6 Feature extraction

In the system above, the hot-spot detector and the PCA process were used to reduce the
dimensionality of the input and to enhance the classification performance of the neural
network.   This degree of processing was chosen so that the recognition system could operate
in real-time.  Other ATR systems have used a more comprehensive set of features as shown in
the table below which is extracted from Priddy et.al. [10], for example.

The table shows the features that were used by the authors in two systems, forward-looking
infra-red (FLIR) and laser radar (LADAR) images.

FLIR  LADAR Feature Description

• • Complexity Ratio of border pixels to total object pixels

• • Length/width Ratio of object length to width

• • Mean contrast Contrast ratio of object's mean to local background
mean

• Maximum brightness Maximum brightness on object

• Contrast ratio Contrast ratio of object's highest pixel to its lowest

• • Difference of means Difference of object and local background means

• • Standard deviation Standard deviation of pixel values on object

• Ratio bright pixels/total pixels Ratio of number of pixels on object within 10% of
maximum brightness to total object pixels

• • Compactness Ratio of number of pixels on object to number of pixels
in rectangle which bounds object

• Length Length of object in pixels

• Height Height of object in pixels

Table 2. Features evaluated by Priddy et.al. [10]

10. pRAM neural networks



The discussion above concentrates on the preprocessing techniques suitable for ATR systems.
Both the applications above use the hardware-realisable pRAM neurocomputer.  The results
presented above have been obtained from pRAM systems using reinforcement training.

The pRAM  is a hardware-realisable model of an artificial neuron which generates an output
in the form of a spike train.   Synaptic weights are realised as multiple stored firing
probabilities in the pRAM.   These probability values are held in RAM and are therefore
readily modified.  This probability of firing corresponds to the quantal release of
neurotransmitter at each synapse. Being RAM-based, the pRAM can implement non-linear
functions within each neuron.  The pRAM has also been shown to generalise after training
[8], by virtue of the probabilistic spike trains which represent inter-neuron activity.

Figure 6. The pRAM neuron architecture

The pRAM-256 [11, 12] is a VLSI (integrated circuit) neural network processor with an
on-chip learning unit.   It offers the flexibility of a software solution with the speed of
hardware.  Connections between the pRAM neurons are reconfigurable so that a network’s
architecture may be modified at any time.  
The pRAM-256 can complete one pass of the training process, training all 256 pRAMs, in
less than 0.25 ms when operating at the maximum clock speed of 33 MHz.   Because of the
high number of pRAMs supported by the pRAM-256, a typical neural network can be built
using a single pRAM Module.  Several pRAM Modules can operate in parallel so that larger
networks can be built.   
These features have been exploited in the above ATR systems, making these systems fast,
compact and hardware-realisable.   For example, a pRAM system can classify image patches
as targets or clutter within the time taken to acquire a new video frame, at a rate of 50 frames
per second.

11. Conclusion

Two methods of automatic target recognition (ATR) using artificial neural networks have
been described.   These are, target position detection and target classification.   The
performance of such ATR systems which use pRAM neural networks has been shown to of a
high standard.

It is important to understand the significance of the results obtained from an ATR system.
The CEP estimate in the first example quantifies the performance of that system.   Whilst the
results given were correct, the CEP estimate is required to determine how good this result
really is.

When poor results are obtained in an ATR system, for example the high false-alarm rate
described above, it is necessary to discover the cause of the errors, if possible.   In the
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example given, it was revealed that the training set was not sufficiently rich in samples of a
given class.

It is clear that preprocessing of the input data is the most important factor in obtaining
acceptable results and a number of preprocessing techniques have been given above and in
the references.

12. References

[1] Wolberg G, Digital Image Warping, IEEE Computer Society Press, New York, 1990.

[2] Fukunaga K, Introduction to statistical pattern recognition, Academic Press, Boston,
1990

[3] Guan Y, Clarkson T G, Taylor J G, Gorse D, "Noisy reinforcement Training for
pRAM Nets", Neural Networks, Vol 7, 523-538, 1994.

[4] Ramanan S, Petersen R, Clarkson T G and Taylor J G , "pRAM nets for detection of
small targets in sequences of infra-red images", Neural Networks (to appear) 1995.

[5] Daniell C E, Kemsley D H, Lincoln W P, Tackett W A, Baraghimian G A, "Artificial
neural networks for automatic target recognition", SPIE Optical Engineering Journal, Vol 31,
No 12, 2521-2531, 1992

[6] Gilmore J F, Czuchry A J, "Application of neocognitron in target recognition", Proc.
INNC-90, Vol 2, 15-18, 1990.

[7] Katz A J, Gateley M T, Collins D R, "Robust classifiers without robust features",
Neural Computation,  Vol 2, 472-479, 1990.

[8] Clarkson T G, Guan Y, Gorse D and Taylor J G,  "Generalisation in Probabilistic
RAM Nets", IEEE Transactions on Neural Networks, Vol 4, No 2, 360-364, 1993.

[9] Ramanan S, Petersen R, Clarkson T G and Taylor J G, "Adaptive learning rate for
training pyramidal pRAM nets", Proc. ICANN’94, Sorrento, Vol 2, 1360-1363, 1994.

[10] Priddy K L, Rogers S K, Ruck D W, Tarr G L, Kabrisky M, "Bayesian selection of
important features for feedforward neural networks", Neurocomputing, Vol 5, 91-103, 1993.

[11] Clarkson T G, Gorse D, Taylor J G, Ng C K, "Learning Probabilistic RAM Nets
Using VLSI Structures",  IEEE Transactions on Computers, Vol 41, 12, 1552-1561, 1992.

[12] T G Clarkson, C K Ng, Y Guan, "The pRAM: An Adaptive VLSI Chip", IEEE
Transactions on Neural Networks, Vol 4, No 3, 408-412, 1993.


