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The probabilistic Random Access Memory (pRAM) is a biologically-inspired model of a

neuron.  The pRAM behaviour is described in this paper in relation to binary and real-valued

input vectors.  The pRAM is hardware-realisable, as is its reinforcement training algorithm.   

The pRAM model may be applied to a wide range of artificial neural network applications,

many of which are classification tasks.   The application presented here is a control problem

where an inverted pendulum, mounted on a cart, is to be balanced.   The solution to this

problem using the pRAM-256, a VLSI pRAM controller, is shown.
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17. Introduction

The probabilistic RAM1, 2) (pRAM) device has been recently described3) as an example of

VLSI implementation of an artificial neural network.   The pRAM neuron2, 4) generates an

output in the form of a spike train where the probability of generating a spike is controlled by

an internal weight, represented as a real-valued number.  The firing probabilities for all

possible binary input vectors can be trained and weights are used in each pRAM, where N2N

is the number of synaptic inputs to the pRAM.

The pRAM is a hardware device with intrinsically neuronlike behaviour (Fig. 1).   It maps

binary inputs (representing the presence or absence of a pulse on each of N input lines) to a

binary output (1 being equivalent to a firing event; 0 to inactivity).  This mapping from {0,1}N

to {0,1} is, in general, a stochastic function.  If the address locations in an N-input pRAM are

indexed by an N-bit binary address vector i using an address decoder, the output a is 1 with

probability 

where  is the vector representing input activity.  The quantity  represents  thei ∈ { 0, 1} N α i

firing probability for the binary input vector i.  In the hardware realisation of the device  isα i

represented as an M-bit integer for each memory location having a value in the range of 0 to

, and these values represent probabilities in the range .    may2M − 1 { 0, 1

2M , 2

2M , ..., 1 − 1

2M } α i

be assigned values which have a neurobiological interpretation; it is this feature which allows

networks of pRAMs, with suitably chosen memory contents, to closely mimic the behaviour

of living neural systems.    

In a pRAM, all memory components are independent random variables.  Thus, in2N

addition to possessing a maximal degree of nonlinearity in its response function - a

Prob (a = 1 i ) = α i;,
(1)
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deterministic, , pRAM can realise any of the  possible binary functions of itsα ∈ { 0, 1} N 22N

inputs - pRAMs differ from units more conventionally used in neural network applications in

that noise is introduced at the synaptic rather than the threshold level; it is well known that

synaptic noise is the dominant source of stochastic behaviour in biological neurons.  

The pRAM models the noise which arises from the release of neurotransmitter by single

vesicles in the synapses of real neurons.   Each vesicle releases a variable amount of

neurotransmitter which may cause the neuron to fire with a given probability.   This feature is

represented by the  in the pRAM, which is the firing probability for a given input vector, i,α i

at the neuron’s synapses at that instant.   An N-input pRAM has  weights which represent2N

the firing probabilities for all possible combinations of input.  Thus  is the firingα 00. .. 0

probability when there is no input activity (spontaneous firing) and  is the firingα 00. .. 0

probability when there is activity only on the first synapse, and so on.

A typical Perceptron model5) of a neuron possessing N inputs has N weights.  For such a

model, multiple vesicle releases are modelled such that, at each synapse, the mean

neurotransmitter release per vesicle is called the weight.   For each synapse, this weight is

multiplied by the input synaptic activity and these products are summed before thresholding,

or a squashing function, is applied to determine the neuron’s output.   It can be seen that

nonlinear interactions between synapses cannot be represented in a single neuron of this form,

whereas the pRAM can exhibit nonlinear behaviour in terms of synaptic activity.

Linear-weighted-sum neurons can be made noisy, but this is normally achieved by

superimposing noise at the point of summation or at the threshold level.

It is also noted that because pRAM networks operate in terms of  ’spike trains’ (streams of

binary digits produced by the addressing of successive memory locations), information

concerning the timing of firing events is retained;  this potentially allows phenomena such as
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the observed phase-locking of visual cortical neurons to be reproduced by pRAM nets, with

the possibility of using such nets as part of an effective ’vision machine’.

18. Reinforcement Training

Reinforcement training is a strategy used in problems of adaptive control in which

individual behavioural units (of which pRAMs are an example) only receive information

concerning the quality of the performance of the system as a whole, and must discover for

themselves how to change their behaviour so as to improve this performance.  Because it

relies only on a global success/failure signal, reinforcement training is likely to be the method

of choice for ’on-line’ neural network applications.

A form of reinforcement training for pRAMs has been devised which is fast and efficient.

Networks of such units are likely to find wide application, for example, in the control of

autonomous robots.  Control need not be centralised; small nets of learning pRAMs could, for

example, be located in the individual joints of a robot limb.  Such a control arrangement

would, in many ways, be akin to the semi-autonomous neural ganglia found in insects.

The form of the training rule devised for the pRAM6) is described by  

where r and p are global success or failure signals respectively, , received from the∈ { 0, 1}
environment at time t,  a(t) is the unit’s binary output,  is the weight addressed by the binaryα u

input vector u, and ρ and λ are constants [0,1].  The delta function is included to make it∈

clear that only the location which is actually addressed at time t is available for modification,

the contents of the other locations being unconnected with the behaviour that led to reward or

punishment at time t.  When r = 1 (success) the probability  changes so as to increase theαu

chance of emitting the same value from that location in the future, whereas if p = 1 (failure)

the probability of emitting the other value when addressed increases.  The constant λ

∆α u(t) = ρ((a −αu)r+λ(a −αu)p)(t) × δu,i;,
(2)
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represents the ratio of punishment to reward; a nonzero value for λ ensures that  training

converges to an appropriate set of memory contents and that the system does not become

trapped in false minima.  Note that reward and penalty take effect independently;  this allows

the possibility of ’neutral’ actions which are neither punished nor rewarded but may

correspond to a useful exploration of the environment. 

Figure 2 shows the manner in which rule (2) has been implemented in hardware. The

memory contents  are updated each clock period according to rule (2).  α u(t + 1)

There are many interesting problems of adaptive control which require real-valued inputs.

These inputs, when digitised, may be input to a pRAM network in parallel as shown later in

the paper.   It is also possible to input such a real-valued vector in the form of a spike train to

a single pRAM input.   The pRAM is modified to include spike generators for the inputs

(pRAMs) and spike integrators at the outputs (counters) which will enable such inputs or

outputs to be handled.  Such a modified device is called an integrating pRAM.

19. Integrating pRAM

This device performs mappings from  to {0,1} using the concept of[0, 1] N

time-averaging.  The integrating pRAM, or i-pRAM, is shown in Fig. 3.  A real-valued input

vector  is approximated by the time-average (over some period R) of successivex ∈ [ 0, 1]N

binary input patterns  by the real to spike-frequency translator which is normally ai ∈ { 0, 1} N

pRAM.

At each time step r = 1...R=  selects a particular location in the pRAM  using the2M, i(r)

address inputs which result in a binary output . These outputs are accumulated in a spikea(r)

integrator (Figure 3) whose contents are reset at the start of a cycle.  After R time steps, the

xu = 1
R Σ

r=1

R

iu(r) (3
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contents of the counter are used to generate the binary i-pRAM output

which is 1 with probability

This i-pRAM can be developed further to implement a generalised form of the training

rule (2). According to rule (2), the input of a single binary address results in the contents of

the single addressed location being modified.  However, the i-pRAM can be used to

implement a generalised form of training rule (2) in which the input of a real-valued number

causes the contents of multiple locations to be modified.

Address counters are required for counting the number of times each of the storage

locations is addressed.   This device can then be used to implement the generalised training

rule referred to above.  This generalised training rule7) is

where  replaces the delta function in eq. (2).  Thus in the learning i-pRAM case,Xu(t)

every location is available for updating, with the change being proportional to that address’s

responsibility for the ultimate i-pRAM binary output a(t).  The ’s record the frequency withXu

which addresses have been accessed and are derived from the address counters above.

The learning rule may be further generalised in order to deal with situations in which

reward or punishment may occur an indefinite number of time steps after the critical action

which caused the environmental response.7)  In such delayed-reinforcement tasks it is

necessary to learn path-action rather than position-action associations. This can be done by

adding eligibility traces to each memory location.  These decay exponentially, by a factor δ,

where a location is not accessed, but otherwise are incremented to reflect both access

frequency and the resulting i-pRAM action.  One trace records "access and activity", whereas

Prob(a = 1 x) = 1
R Σ

r=1

R

a (r)

= Σ
u

α uΠ
j=1

N

(xjuj + xjuj);.

∆α u(t) = ρ((a - α u)r + λ(a − αu)p)(t)Xu(t) , 5)

6
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a complementary trace records "access and inactivity" (both are equally important in

developing an appropriate response to a changing environment).  These terms are called

, respectively.  The eligibility traces are initialised to zero at the start of a taskeu(t) and fu(t)

and subsequently updated according to

The necessary extension of eq.(5), which results in the capacity to learn about temporal

features of the environment, is

When δ = 0, . It can be seen that in this case eq.(8) reduces to theeu =a Xu, and fu =a Xu

original learning i-pRAM training rule (5).

20. VLSI pRAMs

The pRAM-256 is a VLSI device which processes 256 internal pRAMs in a similar

manner to an earlier pRAM device3) (Fig. 4).   The earlier device3) provided only local

reinforcement training in which two "auxiliary pRAMs" are used to determine the appropriate

reward and penalty signals for each "learning pRAM".   The pRAM-256 device is no longer

restricted to local learning.   By allowing the reward and penalty inputs to each pRAM to be

reconfigured by the use of "connection pointers", global, local and competitive methods of

training can be used in this fourth generation of pRAM hardware.8)

The configuration of the pRAM network is defined by a "connection pointer" table where

one entry exists for each input of each pRAM.   This table is held in static RAM (SRAM)

with the pRAM weight memory (Fig. 4).  Thus many architectures can be built with the same

hardware; reconfiguring the network only requires updating a connectivity table.

eu(t) = δeu(t − 1) + δa(t)Xu(t) (6)

fu(t) = δfu(t − 1) + δa(t)Xu(t) . (7)

∆α u(t) = ρ((α ueu − αufu)r + λ(α ufu − αueu)p)(t) . (8)
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Processing of neurons in the pRAM-256 is carried out in two passes.   The first pass

provides forward processing of signals through the network and updates the outputs of each

of the 256 pRAMs.  The second pass is only executed if training is enabled, and updates the

pRAM weights used in pass 1 in response to the new output of the net.   Pass 1 processing

requires 154µs and processing both Pass 1 and Pass 2 requires 246µs in total, both times are

for a clock of 33MHz.

At the same time as the pRAMs are being processed, new external data may be shifted

onto the chip so that neural processing may proceed without incurring any data transfer delay.

21. Hardware Learning

The learning algorithm used in the pRAM-256 is given by eq.(2) above.  Thus it may be

seen from eq.(2) that the weight, , is always in the interval [0,1] so that clipping is neverα u

required.   The action of the learning algorithm is to move the weight closer to the value of a

(the pRAM output) if a reward is given and to move the weight further away from a if a

penalty signal is given, for binary inputs and outputs.   Thus beneficial actions are made more

likely to happen in the future and adverse actions are made less likely to occur, given the

same circumstances.   It is the use of a hardware-realisable algorithm on-chip which makes a

totally hardware-based learning system possible.   This algorithm is incorporated within the

pRAM-256 chip shown in Fig. 4.   

22. Interfacing to External Hardware

To interface the pRAM-256 device to external hardware, programmable logic devices

(FPGAs) are currently used.   These FPGAs have many registers, some of which may be used

to count the spikes coming from the serial outputs of individual pRAMs to generate a mean

firing frequency.  Combinational circuitry within the FPGA may be used for the environment,

to generate the reward and penalty signals during training.   
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An example of the use of the pRAM-256 to solve a pattern classification task has been

given by Clarkson and Ng9).   The next section shows how a pRAM network may be used to

solve a classical pole-balancing task.

23. Inverted Pendulum System

The inverted pendulum system is a classical problem that can be used to test the

performance of a neural network.9)   In this experiment, the system comprises a rigid pole and

a cart on which the pole is hinged.   In order to reduce the complexity of the problem, the cart

moves on rails to its right or left, depending on the force exerted on the cart.   The pole is

hinged to the cart through a frictionless free joint which allows the pole to move in one

dimension only.   Figure 5 shows the arrangement of the pendulum system.   The objective of

the neural network control system is to balance the pole starting from nonzero conditions by

applying appropriate force to the cart.

The inverted pendulum system of Fig. 5 can be characterised by the second-order

differential equations11)

where the state variables are

 angle of the pole with respect to the vertical axis,θ

 angular velocity of the pole,
•
θ

 position of the cart on the track, x

 linear velocity of the cart, and
•
x

F is the applied force in newtons,

••
θ =

g sin θ + cos θ 


−F − m l
•
θ

2
sin θ

mp + m



l 


4
3 − m cos2θ

mp + m



••
x = F + m l (

•
θ

2
sin θ −

••
θ cos θ)

mp + m
,
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and the values of the constants are

g (acceleration due to gravity) = 9.8 ms-2,

m (mass of the cart) = 1.0 kg,

mp (mass of the pole) = 0.1 kg,

l (half-length of the pole) = 0.5 m.

The objective of this control system is to balance the pole without controlling the absolute

position of the cart; therefore only the first equation is relevant to this experiment.   The

experiment may later be extended for the case where the horizontal position of the cart is

controlled within prescribed limits.

23.1Network architecture

In order to generate the appropriate force, F, for balancing the pole, the network must be

able to estimate the next state variables at time t+1 provided that the state variables at the

present time, t, are given.   This is done by using an estimation subnet which takes  θ(t),
•
θ (t)

and F as inputs (Fig. 6).   The outputs of the estimation subnet are .   Theθ(t + 1) and
•
θ (t + 1)

subnet is trained to perform the calculation according to the following differential equations:

θ(t + δ) = δ
•
θ (t) + θ(t)

•
θ (t + δ) = δ

••
θ (t) +

•
θ (t)

which are the linear approximations of the next-time-step state variables.

The state variables are represented by 6-bit signed binary numbers and F is represented by

one bit.   The control action F is calculated by another subnet, the action subnet, whose

structure is shown in Fig. 7.   The inputs to this action subnet are the state variables

corresponding to the present time step.   

The estimation and action subnets are connected to form a slice network.   The structure

of the slice network is depicted in Fig. 4.   The action subnet takes inputs from the previous
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slice network and produces the corresponding control action (F).   The control action and the

previous state variables will be fed into the estimation subnet which prepares the prediction of

the next-time-step state variables for the adjacent slice network.   Therefore, by connecting N

units of the slice network, one can predict the movement of the inverted pendulum system

and the control goal can be achieved.

The delay introduced by the slice network corresponds to one time step (δ) between two

consecutive state variable pairs.   In this experiment, the network is used to predict the

movement (the angle and angular speed) of the pendulum system from t = 0 to t = 1 s.

Obviously, a shorter value for δ requires a larger network because more slice networks are

required to cover the time span.   Therefore, a large value of δ would be preferred based on

this reason.   On the other hand, the delay cannot be too long, for if the control action is too

slow, the network will no longer be able to balance the pole.   In addition, with a long delay,

the linear approximation from the estimation subnet may no longer be precise enough and a

higher-order approximation, e.g., a second-order approximation, would have to be used

instead.   This will increase the training time.   Since δ is related to the speed of the system

clock, we can manipulate the time delay by adjusting the system clock.   In this experiment,

the pRAM system clock is 33 MHz and the delay induced by a combined forward and

weight-update process is 174 ns.   For each slice network, 64 samples are taken and the

average is sent to the decision maker (Fig. 9).   This contributes to a total delay time of 11 ms.

 In order to cover a time span of 1 second, a network with 90 slice networks is required.   The

schematic diagram of the complete pRAM-based control system is shown in Fig. 9.

The decision maker is an external circuit which performs the following tasks:

averages the outputs of the slice networks,
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for each slice network, it computes the hamming distance between the estimated pole

movement and the desired one,

it generates the environmental signals (r and p).   The calculated hamming distance will

be thresholded.   If it is lower than a predefined threshold, the corresponding slice

network will be rewarded.   Otherwise, the slice network will be penalised.

The decision maker uses a 12-bit accumulator to calculate the average of the slice

network outputs.   After 64 samples have been added to the accumulator, the top 6 bits are

taken as the average of the samples.

23.2Training strategy

The network is trained by the on-chip reinforcement training algorithm which is provided

in the pRAM-256 modules.   Every slice network receives a pair of environmental signals (r

and p) from the decision maker, hence the learning is localised.

7.2.1  Estimation subnet

Since every slice network uses the same estimation subnet, it is required to train only one

estimation subnet.    The trained estimation subnet will be replicated accordingly.  The

training set is generated by solving eq.(9).   In order to improve the network’s generalisation

from the training set, a random noise signal is added during training whose amplitude is up to

10% of the maximum input vector.   For shorter training time, the training noise level can be

reduced at the expense of generalisation.   The elements of the training set are initial pole

angle, angular velocity and F (the applied force) together with the desired pole angle and

angular velocity.

All of the above variables are represented using 6-bit signed binary numbers.   When there

is no training noise, the estimation subnet is trained to perform a one-to-one mapping

between present and next-state angles and velocities.   Such a one-to-one mapping together
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with the stochastic property of the pRAM indicates  that the estimation subnet is not able to

produce a pair of stable outputs.   By introducing training noise, the subnet is forced to

perform a many-to-one mapping .   As a result, the outputs of the subnet will be the same

even though there is a slight change in the inputs; hence, a pair of more stable outputs will

result.

7.2.2  Action subnet (slice network)  

Outputs of the slice networks can be regarded as the trajectory of the pole; every slice

network corresponds to a particular point of the pole at a given time.   Given the pair of state

variables, the action subnet is expected to generate the correct control action which is used to

estimate the state variables at the next time step. Whether the control action is good or not

depends on the generated state variables.   During the training process, the generated state

variables will be compared with a pair of target values.   If the difference is within a

predefined limit, the action subnet will be rewarded, otherwise it will be penalised.

The training set contains the initial conditions and the desired pairs of state variables.   

The initial condition is a two-dimensional vector which describes the initial position and

velocity of the pole.   The desired pairs of state variables contain the value of the state

variables at different time steps.   Since there are 90 slice networks which correspond to 90

time steps, 90 pairs of desired state variables are required.

It is required to halt training when the average of the slice network output is being

calculated.   The decision maker can do so by setting r=0 and p=0.   An alternative strategy is

to disable the TRAIN input to the pRAM 256, which results in only forward passes being

processed.   By means of the strategy above, a pRAM net was trained to solve eq.(9) and

thereby to balance the inverted pendulum.

13



24. Conclusions

It has been shown how the pRAM artificial neuron may process temporal data in two

ways.  The first is by the use of the integrating pRAM which retains temporal information in

the form of an activity history.   The second is by dividing time into slices, and this method is

closer to pattern recognition than is the first method.   We have proposed an application for a

neuroprocessor, the pRAM-256, to solve the inverted pendulum balancing problem using the

second method.   This application shows the flexibility of using pRAM-256 chips in

pRAM-based neural network construction.   In the system described, ten pRAM-256 chips are

used. These are connected via the on-chip serial links.   In addition, the on-chip reinforcement

learning facility enables fast learning for a large-scale network.   However, the decision maker

is a drawback in a self-contained system.   We are investigating the feasibility of

incorporating such a facility into a single package.
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Fig. 1.  The pRAM model.

Fig. 2.  The on-chip learning unit which implements eq.(2).

Fig. 3.  The integrating pRAM.

Fig. 4. The pRAM-256 neuroprocessor architecture.

Fig. 5. The inverted pendulum system.

Fig. 6.   The estimation subnet.

Fig. 7.   The action subnet structure.

Fig. 8.  A slice network is constructed by connecting an action subnet and an estimation

subnet.

Fig. 9.  The complete pRAM-based control system for the inverted pendulum.

16


