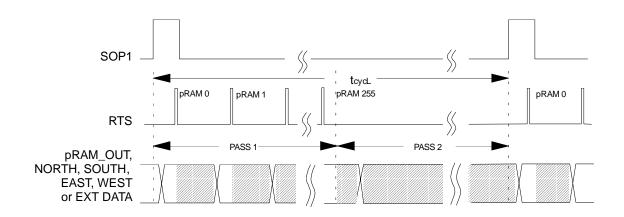
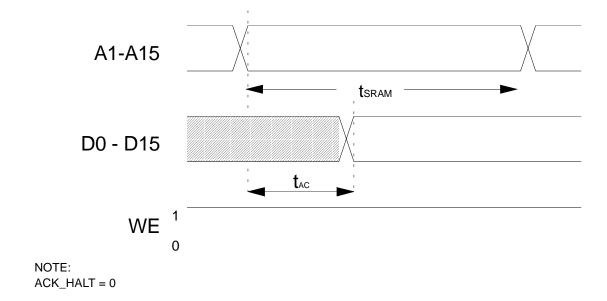

pRAM-256 TIMING

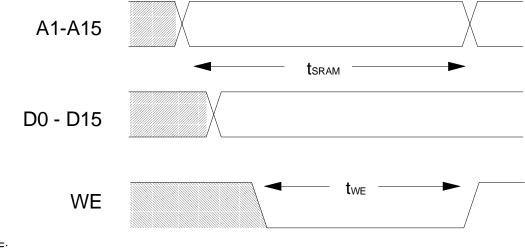
CLK	input clock rate	33MHz maximu	um (determined by tac of SRAM)
$t_{\sf AC}$	access time of external SRAM	25 nS	
$t_{ ext{cyc}}$	pRAM-256 cycle time (training disabled)	0.154 mS	(5120 cycles of CLK @ 33MHz)
$t_{\hbox{\scriptsize cycL}}$	pRAM-256 cycle time (training enabled)	0.246 mS	(8192 cycles of CLK @ 33MHz)
t_{p}	interval between pRAM outputs	600ns	(20 cycles of CLK @ 33 MHz)
t sop	SOP1 pulse width	600ns	(20 cycles of CLK @ 33 MHz)
t_{WE}	WE pulse width	40ns minimum	
t SRAM	SRAM cycle time	60ns	(2 cycles of CLK @ 33MHz)
t_{RRW}	RRW pulse width	40ns minimum	
t RTS	RTS pulse width	40ns minimum	


INPUT AND OUTPUT DATA NO TRAINING

NOTES: ACK_HALT = 0 ACK_TRAIN = 0

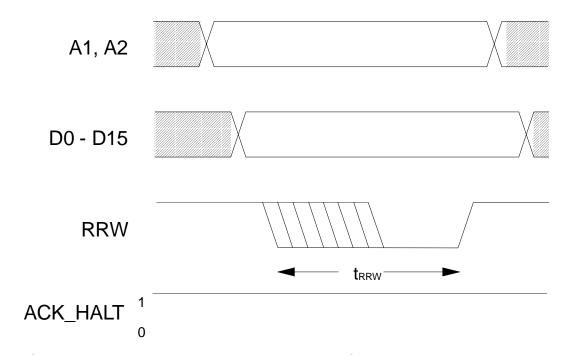
DATA IS LATCHED INTO ON-CHIP MEMORY ON THE TRAILING EDGE OF CTS


WITH TRAINING ENABLED


NOTES: ACK_HALT = 0 ACK_TRAIN = 1

DATA IS TRANSFERRED DURING PASS 1 ONLY

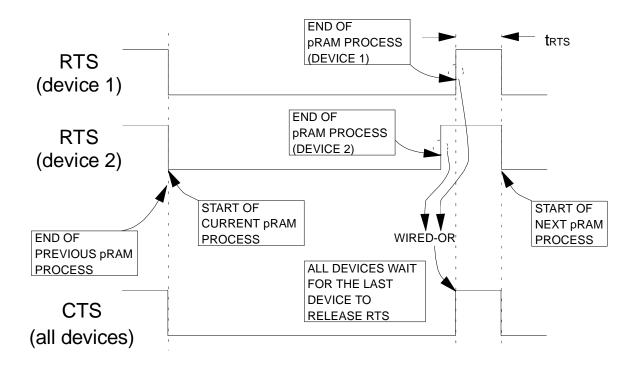
READ CYCLE



WRITE CYCLE

NOTE: ACK_HALT = 0

WRITE TO pRAM-256 INTERNAL REGISTERS

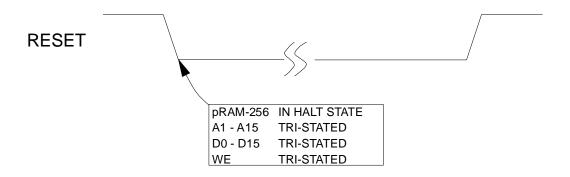

NOTE 1:
ACK_HALT INDICATES THAT A1, A2 and D0-D15
ARE TRI-STATED. EXTERNAL CIRCUITRY MUST
WAIT FOR ACK_HALT TO BE ASSERTED BEFORE
ATTEMPTING TO USE THE BUSES.

NOTE 2:
AFTER ACK_HALT GOES HIGH, RRW SHOULD
NOT BE IN A LOW STATE WHEN A1 OR A2 ARE
CHANGING AS THE CONDITION A1=0 A2=1 WILL
CAUSE THE FEEDBACK POLYNOMIAL
REGISTER TO BE CORRUPTED

MULTIPLE pRAM-256 ARRAYS

SYNCHRONISATION BETWEEN pRAM-256 MODULES IS MAINTAINED BY WIRING TOGETHER THE OPEN-DRAIN OUTPUTS (RTS) AND CONNECTING THE RESULTING SIGNAL TO THE CTS INPUT OF ALL DEVICES.

THIS ENSURES THAT THE EXCHANGE OF DATA BETWEEN pRAM-256 MODULES ONLY OCCURS WHEN THE pRAM_OUT DATA OF ALL MODULES IS VALID.


REWARD AND PENALTY INPUTS

NOTES: ACK_HALT = 0 , ACK_TRAIN = 1

REWARD & PENALTY ARE NOT LATCHED INTERNALLY TO THE pRAM-256. THESE SIGNALS SHOULD BE LATCHED EXTERNALLY DURING PASS 2 OF THE pRAM-256. SOP1 MAY BE USED AS A STROBE TO LATCH THE REWARD AND PENALTY SIGNALS.

RESET

NOTE:

RESET SETS THE INTERNAL FEEDBACK POLYNOMIAL GENERATOR TO ITS INITIAL STATE AND RESETS ALL INTERNAL COUNTERS SO THAT PROCESSING OF pRAM #0 STARTS AS SOON AS RESET GOES HIGH.