
REVIEW OF HARDWARE pRAMs

T G Clarkson, C K Ng, C Christodoulou and J Bean

Department of Electronic and Electrical Engineering

King’s College London, Strand

London WC2R 2LS

Abstract

This paper reviews the development of the probabilistic RAM (pRAM) from its
conception to the present day. One of the chief aims of this model of an artificial
neuron has been to implement suitable learning rules in hardware. This work spans
the development of single neuron models to an architecture for implementing
large-scale pRAM networks and on to artificial neurons with temporal responses.

pRAM development

Four generations of pRAM hardware have so far been developed, three of which are in
VLSI [1,2,3]. In 1988, the first hardware pRAMs were built as 2-input devices
constructed (Fig. 1) using LSI logic parts. A small net, comprising two of these devices
was shown to give results which agreed well with earlier theoretical analysis. The results
of this net show the distinctive pulse-train output of such devices (Fig. 1). Tasks such as
mutual inhibition or mutual excitation were successfully learned. The training was
achieved by running the pRAM hardware for a single iteration on a PC interface card and
the output of the pRAMs was then read. A reinforcement learning rule was applied in
software on the PC and the updated weights were written back to the hardware before the
next iteration was started.

Following the success of this small-scale system the VLSI design of a 4-input pRAM was
completed in early 1990. These devices still relied upon a host computer to perform the
learning algorithm and are in the category of "off-chip" learning devices. Even if only a

RAM 1 - 0.12

RAM 2 - 0.13

NOISE GENERATOR

COMPARATOR

MEMORYA
D

D
R

E
S

S

D
E

C
O

D
E

R

INPUTS

pRAM

OUTPUT

Figure 1. The 2-pRAM and two resultant output traces of a network
showing the mean firing frequencies in the displayed windows and overall.

modest sized network of such devices were built, then the interconnection requirements
would be inconvenient and any reconfiguring of the network could only be achieved by
rewiring. It was necessary to provide each pRAM neuron in a network with its own noise
generator to avoid unwanted correlations between neurons. This was achieved by the
external selection of one of sixteen maximal length sequences; each pRAM was configured
to generate a different sequence. There are clearly limits to this approach if large-scale
nets are envisaged.

To overcome these limitations, the third-generation pRAM design employed serial
processing of pRAMs, on-chip reinforcement learning and a reconfigurable network
architecture. Other features of this form of architecture are described in Section 3. The
number of inputs per pRAM was fixed at 4, but 256 such learning pRAMs were
incorporated on the same chip. A chip and its local RAM memory comprised a pRAM
module. A decision had to be made early on in the design process whether to use local
Hebbian learning or global reinforcement training in the design; local learning was chosen,
as this was of major interest at the time.

By the time that this set of pRAM modules was fabricated, our attention had turned to
global learning and a number of image processing applications were being investigated.
For these reasons, a further development was required, leading to the fourth generation of
pRAMs which allows a number of learning techniques to be used, all of which are based
on reinforcement training. This has been achieved by allowing the reward and penalty
inputs for each neuron to be reconfigurable by a look-up table. For example, a reward
input to a neuron may either be connected to external pins on the chip which receive a
global reward or penalty signal, or to the output of another pRAM. The number of inputs
per pRAM was increased to six, since in image processing it is often useful to process a
central pixel and its four nearest neighbours requiring a 5-input pRAM. However, when
local learning is used, the output of a neuron is used in the determination of its own reward
or penalty signal; this is achieved using auxiliary pRAMs which take the input vector (5
bits, for the reason given above) and the output of the learning pRAM (1 bit) as input.
Therefore, at least 6 inputs per neuron are required to support the use of auxiliary pRAMs.
 The pRAMs within a chip are made to be uniform so that they may be configured to be

either learning pRAMs or auxiliary pRAMs
for local learning, as required. Thus pRAM
modules now contain 256, 6-input pRAMs.

Analogue pRAMs

The provision of RAM and a noise generator
per neuron demands a significant amount of
digital circuitry. The possibility of the use of
analogue processing to replace these two main
components is being explored. Owing to the
limited accuracy of analogue weights
(approximately 6-bits) and the ease of
fabricating and testing digital circuitry, digital
pRAMs were first developed. However, the

Control Gate
(poly-2)

Floating Gate
(poly-1)

Source Drain

Figure 2. A floating gate transistor
(Lee, Sheu and Yang).

functional component parts have been designed in VLSI analogue form and their
characteristics are being measured with a view to building and evaluating analogue pRAMs
in the future.

The three functional blocks which comprise a pRAM neuron are the memory, comparator
and noise source (Fig. 1). These have been fabricated on the same chip, but are not
connected so that each component may be separately tested and their performance
measured. We require well-defined weights in the EEPROM cells which are trainable
within a small error margin and the noise source must have a uniform amplitude
probability across its range but must be uncorrelated with other pRAMs in a net.

Analogue EEPROM Cells

Each word of the digital RAM can be replaced by a transistor whose drain current
represents the stored probability. The temporary nature of analogue dynamic RAM is
unsuitable for this application. Near permanent analogue memory is available in
EEPROMs and have been reported using standard CMOS technologies [4]. They are at
present not a standard technological item. Devices similar to those of [4] have been
fabricated in a standard reduced 3µ process and are being evaluated (Fig. 2). They exhibit
the same characteristics as purpose designed EEPROMs, where the write cycle is relatively
long and elevated voltages are required. The non-linear and approximate relationship
between applied analogue input voltage and output current is acceptable in this application,
because the learning algorithm can compensate for this.

Comparator

An analogue comparator is a standard part but in this application, it is desirable to have
minimum hysteresis or a very low threshold. Any threshold effect will distort the effective
probability distribution of the noise source. It should be noted that in digital circuits a
comparator is a simple function but the analogue equivalent requires careful consideration.

Analogue Noise Source

The Probability Density Function (PDF) of the noise generator must be constant (some
small deviation is acceptable) over a given range of amplitudes and zero elsewhere.
Naturally occurring noise generators are Gaussian and would require significant processing
and amplification to provide useful signals. Two sampled analogue circuits have been
investigated as possible noise sources. In the first a triangular wave generator which has
the required PDF is used. If it is randomly sampled, the resulting output is then a noise
signal with a suitable PDF. When there are many uncorrelated triangular wave based noise
generators on a chip, frequency locking has to be avoided by carefully choosing a variety of
oscillator frequencies in adjacent neurons’ generators. The alternative noise generator is
derived from studies of non-linear
dynamics in digital systems [5][6].
It uses a chaos generator based on
a non-linear amplifier which has a
tent-shaped transfer function. Its
sampled and delayed output is fed
back to its input, Fig 3. It

in

o
u

t

DELAY

Figure 3 The chaos generator

provides a noise- like output signal. If the slopes of the transfer function are linear, the
PDF is constant over the permitted input range. Characteristics of circuits built using this
principle are being investigated. Studies will be undertaken to ensure independent

operation of adjacent generators.

Digital pRAM Modules

For the fourth generation pRAM designs, there are 256 digital 6-pRAM learning neurons
per package (Fig. 4). In the prototypes for this design, one custom integrated circuit and
two external RAM devices comprise a module. It would be advantageous to include all
RAM on-chip eventually. The connectivity of the pRAM inputs is reconfigurable through
a lookup table and the reward-penalty signals are now reconfigurable so that local or
competitive learning can be achieved on-chip. Expansion of a net beyond 256 neurons is
achieved through the use of four serial links which enable one pRAM module to
communicate with up to four neighbours. Instead of using dedicated inputs for the
external (state) inputs, a single pin is now used so that these inputs may be entered serially.
 This not only reduces the pin count, but also allows up to 256 external inputs to be used, if
required. This input is now identical to the existing four serial links and may be used as
such if required, which allows a local cluster of up to 1536 pRAMs, in 6-pRAM modules,
to be constructed.

Interface to a host computer

This module can operate autonomously, but if supervision by a host processor is required,
the chip may be halted using the HALT input and the address and data buses used by the
host processor when ACK is asserted. In this way, the weight memory may be read or
written to or the connection pointer table may be rewritten, so reconfiguring the network.

OUTPUT

LISTS

ON CHIP

MEMORY

(256 x 6 bits)

CONTROL

UNIT

ADDRESS LATCH DATA LATCH

COMPARATOR

PSEUDO RANDOM

NUMBER GENERATOR

LEARNING

BLOCK

External RAM Interface

RAM

SERIAL

PORTS

4
P

O
R

T
S

VECTOR

CACHE

(256 x 6 bits)

E
X

T
E

R
N

A
L

IN
P

U
T

S

LEARNING

PARAMETERS

HALT

ACK

TRAIN

START

Figure 4 The 4th generation pRAM modular architecture.

The TRAIN input is used to enable or disable training. When training is disabled, the
memory update cycle is cancelled and the processing time is thereby reduced.

On-chip Training

The learning rate and decay rate used in the training algorithm are stored in registers, which
may be written to using the memory port. In this way, the learning rate can be changed as
the learning process proceeds.

Three examples of training configurations are shown in Figure 5. Fig.5 (left) shows how
two pRAMs are used as auxiliary pRAMs to a central, learning pRAM. In this case, only
5 of the 6 inputs of the learning pRAM may be used, the remaining input is permanently
connected to either 0 or 1 to keep it inactive. The auxiliary pRAMs are non-learning and
are loaded with memory weights according to the kind of actions that the learning pRAM is
required to reinforce or penalise. This kind of learning is unsupervised. Each learning
pRAM of this kind within a pRAM module may have a distinct behaviour which it is
required to reinforce or penalise.

Fig. 5 (upper) shows how global learning is achieved. All pRAMs which are trained in
this way have their reward inputs connected to a single external reward signal. This global
reward signal will have been determined by an external environment as part of a supervised
learning scheme. The penalty inputs are similarly connected to a global penalty input.
The reward and penalty inputs are independent in this architecture and also in our
reinforcement learning rule.

Fig. 5 (lower) shows how the central pRAM, when firing, may be used to penalise two
other pRAMs to achieve a form of competitive learning. Where groups of neurons form
mutually inhibiting or mutually exciting clusters, the activities of neighbouring pRAMs are
combined, using further pRAMs, into a single reward or penalty input.

Since each pRAM in a module is uncommitted, it may be used as a learning pRAM or an
auxiliary pRAM as desired. The pRAM module may be used to build a single, multi-layer

r

p

Auxiliary

pRAM

(reward)

pRAM

Main OUTPUT

Auxiliary

pRAM

(penalty)

IN
P

U
T

S
REWARD

PENALTY

IN
P

U
T

S

pRAM

OUTPUT

EXTERNAL

PENALTY

INPUT

REWARD

INPUT

OTHER

pRAM

OUTPUTS

TO

pRAM
OUTPUT

PENALTY

pRAM
OUTPUT

PENALTY

pRAM
OUTPUT

6

6

6

Figure 5 left: local learning, upper: global reinforcement and lower: competitive learning

network or a number of smaller, independent
networks. The reward and penalty inputs are
likewise uncommitted so that different
learning methods can be employed within the
same module.

Order of processing pRAMs

Since pRAMs within a module are serially
processed, and since these pRAMs are
logically interconnected, the third generation
pRAM modules stored both the previous state
and the new state of each pRAM so that for
the current pass all pRAM inputs looked at the
previous state table, because the new state
table changed throughout the pass. At the end of each processing pass, the new output
state table was copied to the previous state table. These devices also performed the local
learning process as each of the 256 pRAMs was processed. This means that for a N layer
network, N passes of the pRAM module are required in order to propagate a new input
state through to the output. This is acceptable for local learning as the input vector and the
output state are known at the time that training is applied.

For global reinforcement learning, the reward and penalty signals fed back to the net at
time t, must coincide with the internal states of the network which caused the output at
time t, so that the correct internal states or correlations are rewarded or penalised. This
would be hard to achieve if the net has internal states representing t, t-1 and t-2 at the time
that reinforcement is applied.

For the fourth generation pRAM modules, therefore, the whole network is processed, from
input to output, within one pass of a module. This implies that pRAMs in the input layer
should have the lowest pRAM numbers and pRAMs at the output should have the highest
pRAM numbers, i.e. they are processed last. This applies even if the network is spread
over multiple pRAM modules, since all modules operate concurrently. No "previous
state" table is now used and a network designer must be aware that the output states of
pRAMs are changing. It is usually a straightforward process to set up the connection
tables for the pRAMs to ensure that no pRAM depends upon the output at t-1 of another
pRAM of lower number; for regular pyramidal structures, this is always so. However, if
connections span layers, or two pRAMs are cross-coupled (Fig.6a), it is not possible to
meet this condition.

A means of overcoming this potential problem of pRAM processing order has been found
by the use of dummy pRAMs. A pRAM with a high number is used as a dummy pRAM.
By definition, such pRAMs are processed last in any pass. This pRAM is used to latch the
previous state of any lower-numbered pRAM which cannot meet the ordering restrictions
above. It therefore retains this state throughout the next pass, until it is itself updated.
This is shown in Fig. 6b.

pRAM

#N

#255

(a) (b)

pRAM

#N

#N+1 #N+1

Figure 6 The use of a dummy pRAM

Temporal pRAMs

A digital, hardware-realisable version of a
neuron based on the noisy-leaky integrator
model has been investigated. This model is
different in architecture from the devices
previously described in this paper, but it uses
pRAMs at the synapses and so is also
discussed here.

An analogue hardware outline of this model,
which we call Temporal Noisy-Leaky
Integrator [7-9], is shown in Fig. 7. The
model uses a pRAM at each input and a
Hodgin and Huxley [10] equivalent circuit for

the leaky cell membrane. The 0-pRAMs shown at the input level produce random spike
trains of controlled mean spike frequency according to the given probability p and are not
part of the model, but are shown to indicate how real-valued inputs are converted to spike
trains. The 1-pRAMs that follow model the stochastic neurotransmitter release [11] by the
synapses of real neurons. Neurophysiological evidence [12,13] indicates that there are a
large number of synapses each having a probability of releasing quanta of neurotransmitter.
The probability distribution of quantal release depends on the number of nerve impulses
arriving at the synapse and also on the spontaneous activity of the cell body where there is
no nerve impulse. This noisy nature of the synapses is perfectly matched with the
stochastic pRAM behaviour (α0 being the spontaneous probability and α1 being the
stochastic probability in the 1-pRAMS). In other words, the use of the pRAMs enables the
generation of noise at the synaptic level of the TNLI which complies with the biological
neuron, as opposed to other models in which noise is generated at the threshold level.
Generalisation is also improved by this noise injection [14]. In addition, the 1-pRAMs at
the input level of the TNLI increase slightly the irregularity of the effective input spike
trains.

This can be detected from the effect of the pRAMs on the Coefficient of Variation of the
spike trains which is given by: where tM is the mean interspike intervalCV= (σ∆t

2 /∆tM)

and σ2
∆t is the variance of the spike train given by:

where N is the number of spike intervals and ∆ti is the interspike interval.

For a random Poisson process CV=1 & the
ti histogram follows an exponential shape.
In the TNLI, where discrete time steps
exist due to the pRAMs:CV(1) = (1-p)
for the input spike trains produced by the
0-pRAMs with firing probability p and

 for the effective inputCV(2) = (1-pq)

σ∆t
2 = 1

N Σ
i=1

N
(∆ti − ∆tM)2

THRESHOLD

REFRACTORY
PERIOD

OUTPUT SPI KES

1-pRAMs

R

C

P S R

POSTSYNAPTIC
RESPONSE

0

1

15

16

17

21

EXCITATORY

P S R
EXCITATORY

P S R
EXCITATORY

P S R
INHIBITORY

P S R
INHIBITORY

P S R
INHIBITORY

GENERATORS

SYNAPSE &
DENDRITE
MODELLING

SOMA
MODELLING

FIRING ACTIVITY
MODELLING

p

p

p

p

p

p

0-pRAMs

Figure 7. Analogue hardware outline of
the TNLI neuron model

td df tp dr

-h -h

td dr tp df

h h

Excitatory Postsynaptic Response Inhibitory Postsynaptic Response

0

0

Figure 8. Shapes of the Postsynaptic
Responses used in the TNLI

spike trains (i.e., the ones inducing the
postsynaptic response currents), if α0= 0 and
 α1= q as memory contents of the 1-pRAMs.

The postsynaptic temporal response current
generators (PSR) shown in the diagram of
Fig. 8, model the dendritic propagation of
the postsynaptic potential. For every spike
generated by the pRAMs, the PSR
generators produce postsynaptic current
responses (PSRij(t)) of controlled shapes,
shown in Fig. 8, which can either be
excitatory or inhibitory. These particular
ramp shapes were chosen for the
postsynaptic responses (instead of smooth
exponential ones), due to the fact that they can easily be implemented in hardware and their
defined parameters can be trained. In addition, these shapes result in smoother responses
after passing through the leaky integrator circuit, if long rise and fall times (dr and df) are
selected, compared to responses produced by rectangular shapes commonly used as inputs
to neurons. This enables us to reproduce the smooth postsynaptic potentials produced in
distal dendrites of real neurons [15]. The postsynaptic current responses are summed
temporally and the total postsynaptic current response is fed into the RC circuit (Fig. 7).
The capacitance C and the resistance R represent the soma and the leaky membrane of real
neurons respectively and therefore this circuit models the decay that occurs in the somatic
potential of the biological neuron due to its membrane leak. The capacitance C and the
resistance R are fixed at a suitable value to give the leaky membrane time constant. This
intrinsic leakage of R is used to give additional temporality of a biologically realistic form.
Finally, if the potential of the capacitor exceeds a constant threshold (Vth), the TNLI neuron
fires. It then waits for a refractory period (tR) and fires again if the potential is above the
threshold. Therefore, the maximum firing rate of the TNLI is given by 1/tR.

In the digital hardware structure of the TNLI, the pRAMS at each of the TNLI inputs will
take the form of a probabilistic RAM controller with a serial update digital VLSI structure
[3]. An iterative procedure is used to fetch each pRAM from the external memory and a
postsynaptic response generator attached to each pRAM produces the required postsynaptic
shape. The parameter values governing this shape will be determined by programmable
registers which model the postsynaptic current response. These postsynaptic current
responses are accumulated in the counter where they are multiplied at regular intervals by a
decay rate (Fig. 9). The decayed synaptic potential is routed back to the counter via a load
input. This digitally produces the exponential RC-decay. The decayed postsynaptic
response has a threshold applied and if it exceeds that, the TNLI neuron fires according to
the refractory period conditions [16]. The threshold is implemented using a comparator
and a shift register and gate circuit is used to inhibit firing while in the refractory period
(see Fig. 9).

COUNTER
DECAY

RATE

LOAD DATA

COUNT

COMPARATOR

16
A

Threshold

B
Shift Register, n-stages

0 1 2 n-2 n-1 n....

Pulsed Output

CLK

A B

Mask
Bits

Postsynaptic
Potential

From the
Postsynaptic
Response
Generators

Figure 9. Digital hardware structure of the TNLI.

As mentioned above, in the TNLI we may incorporate hyperpolarising inhibition with
negative current pulses of controlled shape as shown in Fig. 8. Such responses are
produced by certain Postsynaptic Response generators which are assigned to be inhibitory
ones. In practice, this is achieved by programming a negative value for h in a register (Fig
8). The number of inhibitory generators is thus variable. In order to demonstrate the
effects of inhibition, the number of the inhibitory postsynaptic response generators was
varied and the change in the relationship between the Mean Input Current (IM) and the
output frequency of the TNLI was observed. IM in the TNLI neuron i is given by:

(1)

where fj is the mean input spike frequency which
in our simulations is the same for each input j and
PSRij

* is the time integral of the postsynaptic
current (PSRij) produced by a spike arriving on
input line j. N is the total number of input lines
(or pRAMs). At the TNLI inputs, random spike
trains of controlled mean frequency (fj) were
utilised (produced by the 0-pRAMs) which were
unaffected by the 1-pRAM action since their
memory contents were set to ‘1’ for an input spike
and ‘0’ for no spike and thus they fired for each
input spike.

Results were taken with 16 excitatory PSR
generators from two runs with 0 and 6 inhibitory
PSRs. In order to obtain the same Mean Input Current we had to increase the mean input
frequency (fj), while the number of inhibitory inputs was increased. The output
characteristic of the TNLI for the two configurations above is shown in Fig 10. First it
was observed that the TNLI gives a sigmoidal non-linear transfer function instead of a step
function. This behaviour seems to be similar to that of the formal neuron which has a
sigmoid transfer function given by: y = 1/(1 + exp(-αAi)) where α is a constant that
determines the slope of the sigmoid and Ai is given by: where xj is the jth input toΣxjwij

neuron i and wij is the connection weight value from neuron j to neuron i. Ai is equivalent
to IM in the TNLI (eqn. 1). Fig. 10 shows that the introduction of the inhibition has the
same effect as decreasing the value of α in the sigmoid whereas in formal neurons
inhibition only affects Ai.

From Fig. 10 it can be observed that the output frequency with inhibition is higher for low
Mean Input Current (IM) values and lower for high IM values compared to the no inhibition
case. In order to explain this, two snapshots of the Membrane Postsynaptic Potential were
taken for IM = 150pA and IM = 250pA (vertical lines on Fig. 10), for the two extreme cases
of 16ex/0inh and 16ex/6inh. The snapshots showed that the inhibition produces more
fluctuations on the membrane potential though it does not change its measured mean
saturation level. Therefore, in the case of low IM, where the mean saturation level of the
membrane potential is below the threshold, the membrane potential of the 16ex/6inh case
is able to exceed the threshold more frequently than in the 16ex/0inh case due to the

IM=Σ
j=0

N
fj×PSR ij

∗

0 100 200 300 400
0

50

100

150

200

250

Mean Input Current, pA

Output Frequency, Hz

16ex/0inh

16ex/6inh

150 250

Figure 10. The effect of inhibition
on the TNLI output transfer

fluctuations and thus give a higher output frequency. However, in the case of high IM the
mean saturation level of the membrane potential is above the threshold and so in the
16ex/6inh case, due to the high fluctuations again, the membrane potential is able to go
below the threshold more frequently than in the 16ex/0inh case and thus give a lower
output frequency. This explains the reduced slope of the sigmoidal characteristic curves of
Fig. 10 in the presence of inhibition.

In conclusion, inhibition in the TNLI not only reduces the mean input current for the same
mean input frequency, but it also modifies the transfer function of the neuron, by increasing
the fluctuations of the input current around its mean saturation value. This goes beyond the
assumption underlying the formal neuron used in Artificial Neural Networks where it is
assumed that positive and negative inputs add linearly and then pass through a fixed
sigmoidal transfer function, whereas in the TNLI the sigmoidal transfer function is
modified by the signals passing through it. The effect of the fluctuations cannot be
established in experimental neurobiological observations [9], since the inputs to the
biological neuron cannot be controlled. Therefore, the TNLI, despite its simplicity, can be
useful for modelling and understanding real neuron behaviour.

Conclusion

The major thrust of our research has been not only to develop hardware-realisable neurons,
but to develop models which allow learning processes to be performed in hardware also.
A number of learning algorithms have been proposed for the pRAM but the easiest to
implement is the reward/penalty (or reinforcement) algorithm since this algorithm always
produces weights in the range [0,1]. This also has the benefit of operating on a single
spike output, rather than requiring a pulse train in order to calculate the weight update.
This gives the advantage of stochasticity in the learning process which is useful to a net in
that the net may better explore its environment and it is less likely to be trapped in local
minima during training.

Both the pRAM neuron and the reinforcement training may be mathematically analysed [2]
and a proof of convergence exists for the learning rule.

The pRAM modules are currently being used for image processing, pattern classification
and real-valued function learning. Only by the use of such hardware is it possible to
classify objects in a video image within one frame time of 20ms.

A family of pRAM structures is envisaged for the future, which will include learning,
non-learning and temporal devices, thus enabling pRAM modules to be applied to a wide
range of tasks.

References

1. T G Clarkson, D Gorse and J G Taylor (1989), "Hardware-realisable models of
 neural processing", Proceedings of IEE International Conference on Artificial
Neural Networks, 242-246, London.

2. T G Clarkson, D Gorse, J G Taylor, C K Ng (1992), "Learning Probabilistic
RAM Nets Using VLSI Structures", IEEE Transactions on Computers, Vol 41,
12, 1552-1561.

3. T G Clarkson, C K Ng, C Christodoulou, Y Guan (1993), "The pRAM: An
Adaptive VLSI Chip", IEEE Transactions on Neural Networks, Special Issue on
Neural Network Hardware, (to appear in May 1993).

4. B W Lee, B J Sheu and H Yang (1991), "Analog Floating Gate Synapses for
General Purpose VLSI Neural Computation", IEEE Trans. Circuits and
Systems, Vol 38, No 6, 654-658.

5. T.Kilias, Eindimensional Zeitdiscrete Chaotische Abbildungen, PhD thesis,
Technische Universität Dresden, 1992.

6. A.C. Davies, Relating Pseudorandom Signal Generators to Chaos in Non-linear
Dynamic Systems, Accepted for ECCTD '93 DAVOS, King's College London,
1993.

7. Christodoulou C, Taylor J G, Clarkson T G & Gorse D (1992). The
Noisy-Leaky Integrator model implemented using pRAMs. Proceedings of the
Int. Joint Conf. in Neural Networks 1992, Baltimore, Vol. I, 178-183.

8. Christodoulou C, Bugmann G, Taylor J G and Clarkson T G (1992). An
extension of the Temporal Noisy-Leaky Integrator neuron and its potential
applications. Proceedings of the IJCNN ’92, Beijing, Vol. III, 165-170.

9. Christodoulou C, Bugmann G, Clarkson T G and Taylor J G (1993). The Temporal
Noisy-Leaky Integrator with additional inhibitory inputs. New Trends in Neural
Computation, Eds. Mira, Cabestany and Prieto, Springer-Verlag, 465-470.

10. Hodgkin A L and Huxley A F (1952). A quantitative description of membrane
current and its application to conduction and excitation in a nerve. Journal of
Physiology (London) 117, 500-544.

11. Gorse D, Taylor J G (1991). A continuous Input RAM-Based Stochastic
Neural Model. Neural Networks, Vol. 4, 657-665.

12. Katz, B. (1969). The release of Neural Transmitter substance. Liverpool
University Press, Liverpool.

13. Raymund Y. K. Pun, Elaine A. Neale, Peter B. Cuthrie, and Philip G. Nelson
(1986). Active and Inactive Central Synapses in the Cell Culture. Journal of
Neurophysiology, Vol. 56, No. 5, 1242-1256, USA.

14. Guan Y, Clarkson T G, Taylor J G & Gorse D (1992). The application of noisy
reward/penalty learning to pyramidal pRAM structures. Proceedings of the
IJCNN’92, Baltimore, Vol. III, 660-665.

15. Shepherd G. M. (1990). The Synaptic Organisation of the Brain, (3rd edition),
Oxford University Press.

16. Bressloff P C and Taylor J G (1991). Discrete Time Leaky Integrator Network
With Synaptic Noise. Neural Networks, Vol. 4, 789-801.

