
1. INTRODUCTION

The probabilistic RAM (pRAM) device has been
recently described1) as an example of the VLSI
implementation of an artificial neural network. Whilst
the training example described in the paper1) above
employed the on-chip weight update procedure, the
environmental reward and penalty signals were supplied
by a host computer. The results presented here have
been obtained from a development of the above chip
and additionally, the environmental signals used in
training have been obtained from a pRAM. Thus the
whole training operation may be conducted in hardware;
no supervisory processor is required.

The pRAM neuron2, 3) generates an output in the
form of a spike train where the probability of generating
a spike is controlled by an internal weight, represented
as a real-valued number . The firing∈ [0, 1]
probabilities for all possible binary input vectors can be
trained and weights are used in each pRAM, where2N

N is the number of synaptic inputs to the pRAM.
The pRAM-256 is a VLSI device which processes

256 internal pRAMs in a similar way to the earlier
device1). The primary difference between the two chips
is in the provision of a more versatile range of
reinforcement training methods in the pRAM-256, the
same update algorithm being used in each. The earlier
device provided only local reinforcement training where
two "auxiliary pRAMs" are used to determine the
appropriate reward and penalty signals for each
"learning pRAM". The pRAM-256 device is no longer
restricted to local learning. By allowing the reward and

penalty inputs to each pRAM to be reconfigured by the
use of "connection pointers", global, local and
competitive methods of training can be used in this
fourth generation of pRAM hardware4). Each pRAM
neuron now has 6 inputs.

Processing of neurons in the pRAM-256 is carried
out in two passes. The first pass provides forward
processing of signals through the network and updates
the outputs of each of the 256 pRAMs. The second
pass is only executed if training is enabled and this pass
updates the pRAM weights used in pass 1 in response to
the new output of the net. Pass 1 processing requires
154 s and processing both Pass 1 and Pass 2 requiresµ
246 s in total, both timings are for a clock of 33MHz.µ

At the same time as the pRAMs are being
processed, new external data may be shifted onto the
chip so that neural processing may proceed without
incurring any data transfer delay. The pRAM-256 is
shown in Fig. 1.

2. HARDWARE LEARNING

The learning algorithm used in the pRAM-256 is:

where a is the pRAM output, either 0 or 1, and isα u

the memory content addressed by the input vector u.
The reward and penalty inputs are r and p respectively;
these are in the interval 0 to 1, but are normally binary
quantities generated with a given probability by the
environment. and are learning rates [0,1]. Thusρ λ ∈
it may be seen from (1) that the weight, , is always inαu

the interval [0,1] so that clipping is never required.

∆αu(t) = ρ((a − αu)r + λ(a − αu)p)(t) × δu,i

A standalone hardware-based learning system

Trevor CLARKSON§ and Chi Kwong NG°

§Department of Electronic and Electrical Engineering, King’s College, Strand, London, UK
°Department of Electronic Engineering, City Polytechnic of Hong Kong, HONG KONG

The probabilistic RAM (pRAM) is an artificial neuron. A hardware-realisable reinforcement
training algorithm has been devised for the pRAM. The results presented here are obtained by
training a VLSI pRAM net to perform a classification task where a hardware-based weight
update procedure has been used throughout. The pRAM may be used as an embedded process
controller where on-line adaptation is required and the use of a workstation is undesirable on the
grounds of size or cost.

The action of the above algorithm is to move the weight
closer to the value of a (the pRAM output) if a reward
is given and to move the weight further away from a if a
penalty signal is given. Thus beneficial actions are
made more likely to happen in the future and adverse
actions are made less likely to occur, given the same
circumstances.
It is the use of a hardware-realisable algorithm on-chip
which makes a totally hardware-based learning system
possible.

9. TRAINING TASK

A pRAM net was trained to classify patterns. In this
example, four patterns of 6 x 6 pixels in size were used
which were encoded as 2-bit numbers, 00, 01, 10 and
11. As each pattern was presented to the net in a
randomised order, the labelled pattern class was
compared to the output of the network by a supervisor
and a reward was given to the net if the output of the net
agreed with the class of the pattern presented; a penalty
signal was sent from the supervisor to the net otherwise
(Fig. 2). The supervisor therefore acts as a predefined
lookup table. The appropriate reward and penalty
signals are sent to all pRAMs in the net, so that global
reinforcement took place. As training proceeds, so the
pRAM weights are modified; correct outputs from the
net are rewarded and incorrect outputs are penalised.
Receiving a reward signal makes a pRAM more likely
to produce the same action in the future in similar
circumstances (e.g. it will be more likely to output a 1
later on, if it output a 1 and received a reward); and
vice-versa for a penalty signal.

The output of the net is monitored and may be
displayed graphically. To observe the overall trend,
output spikes from the net may be integrated over 256
spike periods to obtain the mean firing frequency. In
this way, as the net trains, it is possible to observe the
qualitative results produced by the net. The weights,

representing the probability of firing, are initialised to
0.5, which means that each pRAM is equally likely to
output a ’1’ as it is to output a ’0’.

At the start of training, the mean firing frequencies
of the pRAMs are very close to 0.5 - no one class is
clearly identified. After only 12 iterations however,
some structure emerges (Fig. 3). After (typically) 60
iterations, all input patterns are correctly classified and
the patterns are all correctly identified.

The configuration of the pRAM network is defined
by a "connection pointer" table where one entry exists

E XT. RE WARD

OUT PUT
LIS T S

ON CHIP
MEMORY

(256 x 6 bits)

CONT ROL
UNIT

ADDRE S S LAT CH DATA LAT CH

COMPARAT OR

PS EUDO RANDOM
NUMBE R GE NE RAT OR

LE ARNING

BLOCK

E xternal RAM Interface

S RAM

S ERIAL

PORT S4 P
O

R
T

S

VECT OR
CACHE

(256 x 6 bits)

E
X

TE
R

N
A

L
IN

P
U

T
S

LE ARNING
PARAMET E RS

HALT
ACK_HALT

S OP

T RAIN

ACK_T RAIN

RT S

CT S

E XT. PENALT Y

pRAM_OUT

Fig. 1. pRAM-256 Architecture

class

pRAM networkinput pattern

r
p

supervisor

pRAM

class
output

Fig. 2. Training the pRAM network.

Fig. 3. The mean firing frequencies of the
pRAM net are represented graphically where
the edge of the area represents mean firing
rates of the two pRAM outputs of 0% or 100%.
The centre of the area denotes a mean firing
rate of 50% from each pRAM neuron. The
network has been run for 12 iterations.

Fig. 4. The mean firing frequencies of the
pRAM net after 60 iterations.

for each input of each pRAM. This table is held in
static RAM with the pRAM weight memory (Fig. 1).
Thus many architectures can be built with the same
hardware; reconfiguring the network only requires
updating a connectivity table.

10. INTERFACING TO EXTERNAL HARDWARE

To interface the pRAM-256 device to external
hardware, Lattice in-system programmable (isp) FPGA
devices are currently used. These FPGAs have many
registers, some of which may be used to count the
spikes coming from the serial outputs of individual
pRAMs to generate a mean firing frequency.
Combinational circuitry within the FPGA may be used
for the supervisor, to generate the reward and penalty
signals during training. In this way, the pRAM
supervisor of Fig. 2 may be replaced by FPGA
functions. Since the logic of the isp FPGA devices may
be reconfigured in-situ, a very versatile system results
where both the neural network, and its interface can be
reused for a different purpose with no changes to the
hardware circuitry.

The pRAM-256 and FPGA hardware shown in Fig.
5, can be reconfigured by changes in the firmware
because the functions of many signals are fixed. For
example, the pRAM_OUT pin of the pRAM-256
always conveys pulses which represent the states of all
256 pRAM neurons. Another output, SOP (not shown),
indicates the start of a processing pass and CTS (not
shown in Fig. 5) is a clock for the pRAM_OUT signal.

In this way, these three signals will normally be
assigned to three inputs of the FPGA. The FPGA may
be configured to count pRAM pulses and form a mean
firing frequency or, alternatively, the FPGA may be
reconfigured as a shift register to convey the states of a
number of pRAM neurons to the host computer.

The FPGA to host connection can be similarly
predetermined, requiring a unidirectional address bus, a
bidirectional data bus and a read/write line. In this way
data or status registers may be read as shown in Fig. 5,
or a control register can be configured within the FPGA
which may be written to by the host computer. The
control register may be used to set the state of the
pRAM-256 control lines, such as TRAIN and HALT
which enable training and halt the pRAM-256
respectively. The HALT mode tri-states all pRAM-256
lines and, in this case, would allow the host computer to
modify, read or store the neurons’ weights or update the
connection table to reconfigure the network.

External data may be applied directly to the
pRAM-256 or such data may be buffered by the FPGA.
The FPGA is used to take the neural network output and
to directly control the system to which it is connected.

11. CONCLUSION

The probabilistic RAM (pRAM) is a VLSI device
with on-chip learning. It has been shown how an
autonomous learning system may be constructed using
this device. Networks containing in excess of 1500
neurons may be built by the use of multiple pRAM-256
devices. The use of CMOS digital hardware allows
high-speed processing to be combined with a
low-power consumption and a small size. This makes
the pRAM-256 applicable to a wide range of
applications.

12. REFERENCES

1) T G Clarkson, C K Ng and Y Guan, IEEE
Transactions on Neural Networks, 4 (1993) 408.

2) D Gorse and J G Taylor, Physica D, 34 (1989) 90.

3) T G Clarkson, D Gorse, J G Taylor and C K Ng,
IEEE Transactions on Computers, 41 (1992) 1552.

4) T G Clarkson and C K Ng, Proc. Microelectronics
for Neural Networks, Edinburgh, Scotland, 1993,
(UnivEd, Edinburgh, 1993), p 233.

pRAM-256
Controller

FPGA

spike
trains

HOS T

ADDRES SDATA

pRAM_OUT COUNT ER

Fig. 5. Example showing the use of a
pRAM-256 with a host computer. An FPGA
counter is used to convert a pRAM spike train
into a mean firing frequency which may be read
from a register by a host computer. Similar
registers within the FPGA containing the outputs
of other neurons may also be addressed and
read by the host.

